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Abstract— As Autonomous Vehicles (AVs) become possible
for E-hailing services operate, especially when telecom
companies start deploying next-generation wireless networks
(known as 5G) , many new technologies may be applied in these
vehicles. Dynamic-route-switching is one of these technologies,
which could help vehicles find the best possible route based on
real-time traffic information. However, allowing all AVs to
choose their own optimal routes is not the best solution for a
complex city network, since each vehicle ignores its negative
effect on the road system due to the additional congestion it
creates. As a result, with this system, some of the links may
become over-congested, causing the whole road network system
performance to degrade. Meanwhile, the travel time reliability,
especially during the peak hours, is an essential factor to
improve the customers’ ride experience. Unfortunately, these
two issues have received relatively less attention. In this paper,
we design a link-based dynamic pricing model to improve the
road network system and travel time reliability at the same time.
In this approach, we assume that all links are eligible with the
dynamic pricing, and AVs will be perfect informed with update
traffic condition and follow the dynamic road pricing. A
heuristic approach is developed to address this computationally
difficult problem. The output includes link-based surcharge,
new travel demand and traffic condition which would improve
the system performance close to the System Optimal (SO)
solution and maintain the travel time reliability. Finally, we
evaluate the effectiveness and efficiency of the proposed model
to the well-known test Sioux Falls network.

I. INTRODUCTION

In the past few years, autonomous vehicles (AVs)
equipped with advanced sensor technologies and able to drive
themselves without any human intervention have been
developed [1]. They can provide many advantages when
compared with human’s driving. For example, Avs have the
potential to reduce crashes, smoothing traffic, and reducing the
congestion time [2]. However, due to the new features
associated with of AVs, more advanced research is needed to
learn about their travel behavior and system performance,
especially regarding to city congestion issues.

Road pricing, especially the congestion pricing, is not new
in the transportation industry. Singapore began implementing
congestion pricing in 1975, which set up a restricted driving
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area and levied extra toll charges during the peak traffic hours
[3]. Today, countries like the UK, Australia, Sweden, and
Finland are all have some version of a congestion road pricing
scheme. Results indicate that implementing the proper level of
toll/surcharge is one of the best viable solutions to reduce
congestion, along with other social and environmental
negative externalities like air pollution, greenhouse gas
emissions, visual intrusion, noise, and road accidents [4].

In this paper, we will apply the theoretical study of using
road pricing to control congested traffic and improve the
network system performance. Pigou [5] first proposed
congestion pricing theory by using externalities to measure
optimal congestion charges, which originated from the concept
of the economics of welfare. In line with this theory, those who
use congested roads should pay a toll equal to the difference
between the marginal social cost and the marginal private cost
[6,7]. However, the assumption of first-best pricing, which
implies road congestion is caused only by underpricing road
users’ travel cost, is not perfect in practice. It sometimes
overlooks other factors like supply and demand changes after
surcharges have been applied. If they are simply applied
without considering the consequences of their application, it
may distort the allocation of traffic assignment over the entire
traffic network [8].

Due to the imperfections of first-best pricing, second-best
pricing, which incorporates feedback from the system, was
first explored by Lévy-Lambert [9] and Marchand [10]. They
focused on the simplest version of a “classic two-route
problem” in which a non-tolled alternative road runs parallel
to a toll road in order to determine toll levels. More recently,
Wang and Lownes [11] applied a link-based surcharge
mechanism to adapt a full network to E-hailing service use. In
general, the problem with second-best road pricing is finding
a set of optimal values for toll charges in order to minimize
total travel time, maximize toll revenue, or accomplish both,
while also considering the choice behavior of network users.
Regardless of the pricing mechanisms set around different
modes of transportation or around new innovative technology
like autonomous vehicles, the second-best pricing model can
incorporate further consideration of factors in the model in
order to achieve multiple goals at the same time.

In this paper, we design a link-based dynamic pricing
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TABLE L.

NOTATION INDEX

a€A Link a belonging to set of links A. dy, Traffic Demand of O-D pair w
ieN Node i belonging to set of nodes N. D, Travel Demand function for O-D pair w
wEeEWw O-D pair w belonging to set of O-D pairs W il Flow on path k connecting O-D pair w
keK Path in set of paths K Xq Traffic volume of link a
a Travel time variation allowance rate ta(x) Travel time function for link a with volume x
B Travel cost variation allowance rate M, Marginal cost for link a
u Total travel cost St Link surcharge rate in iteration n
0 Initial general travel cost for O-D pair w before the Wk Equal to 1 iflink @ on the path & between the O-D pair w,
HFw surcharge ba’ otherwise equal to 0

model to improve the road network system and travel time

reliability simultaneously. Different than the previous

dynamic pricing studies focus on toll pricing and traffic

assignment e.g., Nikolic et al.[15], Lu and Mahmassani [16]

and Sharron et al. [17], this study more focus on the AVs

transportation network system performance improvement and
service reliability control. As the result, the prices on
congested routes are higher than uncongested routes, which
lead to AVs to switching to alternative uncongested routes and
thus results in fewer AVs selecting those congested routes.

Additionally, with service reliability control, the increasing of

the dynamic pricing would lead some customers shift their

ride to a less congested time period or shift their e-hailing ride
to more economic mode e.g. transit, bicycle, etc. Overall, the

iterative process of pricing and predicting impact leads to a

stable solution that should improve system performance,

maintain the traffic level, and ensure the customers’ travel
reliability at the same time. The contributions of this work are:

e An efficient algorithm that will update the travel demand
while ensuring each link will maintain a non-congestion
condition. Previous work either focused on one travel
demand estimation only or limited the travel reliability in
a regional network [18].

e A bi-level mathematic model with consideration of
customers choose to give up their e-hailing ride or shift
their ride to a less congested time period.

e A platform output that would not only include optimal
pricing, but also the surcharge revenue, the new travel
demand under this pricing and the associated traffic
condition.

II. NETWORK AND MODELS

As illustrated in Fig. 1. there are four main components in
this model: the Surcharge Authority, the E-hailing service
company, the E-hailing customers, and the Autonomous
Service vehicles (AVs). With the customers’ trip requests, E-
hailing service companies calculate the riders’ estimated trip
time and pricing based on current autonomous vehicle
locations, status, and surcharge authority based dynamic
pricing. If the riders accept the trips’ rates and times, the E-
hailing company will assign the AVs to the customers and
update each vehicle’s route. Each vehicle’s route information
will be updated and send to the surcharge authority at each
time segment, and the surcharge authority will use this

information to calculate dynamic pricing for next time
interval.

Figure 1. Role Components of the Model
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In this paper, we propose a link based dynamic pricing
system for Autonomous Vehicle (AV) Ride-sharing E-hailing
Services. The goals include optimizing traffic system
performance while maintaining each rider’s travel time
reliability. By introducing link based dynamic pricing: a) road
network usage will change from depending on each vehicle’s
shortest path to employing the path which will minimize total
system travel time; b) trip travel time will be guaranteed in a
certain range through the demand changes instigated by
pricing. Previous work either assumes that the demand is fixed
or only targets optimal road network traffic conditions [19].
The generalization of the dynamic pricing problem
formulation is explained in the following subsection, and a list
of parameters and variables are demonstrated in following
table I.

A bi-level programming model is proposed to solve this
dynamic pricing problem. The outer layer of this model
represents the surcharge authority, which calculates the most
effective pricing to achieve System Optimal (SO) traffic
conditions and guarantee the trip travel time in an acceptable
range. The objective functions and subjective constraints are
defined as follows:

Minzxa ta(xq) )
a
Subject to:
ta(xg) < (1 + @)ty @)
Z ka‘n S dW,O \4 k,W (3)
k
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Definitional constraints:

W= ), 00 R )
kK w

dtg (xg)
Ma = xa dxn

(6)

sp=(G)aomp+(1-2)spr D

Objective function (1), which represents the surcharge
authority objective, is the standard system optimization
formula. Equation (2) is the link travel time constraint, which
ensures each link travel time does not exceed the given
threshold. Equations (3) and (4) are the constraints which
define all path volumes that fall between 0 and the original
total demand. Equation (1) and constraints (3) and (4) are
similar to the User Equilibrium assignment [12]. Equation (5)
is the definitional constraint from path to link formulation
transformation. Equations (6) and (7) are link pricing
calculation mechanisms based on the marginal externality.

The inner layer, which includes the AVs, E-hailing service
companies, and the AVs’ three components, and aims to serve
the maximum original demand, is formulated as follows:

Max Z Dy, (uy) (8)
w
Such that:
For each OD pair:
D sk sy Y S ()
7 m )
=y} Vaw
W <@+pw, vw (10)
dy <d,, Vw (11)

And for each link, it follows:
Xa
Mian th(w) + STdw (12)
0
a
Subject to:

kaw'" =dy Viw (13)
k

>0 Yikw (14)
The object function (8) is defined as the maximum number
of trips based on original demand. The general travel cost
function is exhibited in equation (9), demonstrating the
relationship between each OD trip travel cost associated with
the correlated link’s travel time and link pricing. Equations

(10) and (11) are the cost constraints for the OD trip after link
pricing is applied. At the trip level, equations (9) ~ (11)
determine the OD trip service demand for each iteration. At
the link-based level, Equations (12) ~ (14) assume each
vehicle has chosen its least costly route, which means these
equations can estimate traffic condition based on the new link
pricing and service demands through this process.

III. SOLUTION ALGORITHM

A heuristic solution algorithm is developed to solve this E-
hailing autonomous vehicle pricing and travel time reliability
problems. Four major phases are involved in the process to
improve system performance: in the first phase, the algorithm
aims to minimize total system travel time, while the second
phase aims to serve as much original demand as possible. In
the third phase, the AVs obtain all previously-calculated
information with the assumption that it is perfect and use it to
make their route choices. In the last phase, each link travel
time will be ensured in a certain range. If the volume increases
over capacity, the incremental process will end. The
aggregation of each rider’s travel decisions characterizes the
traffic conditions of each specific time period that follows,
and the surcharge authority accurately obtains this
information. The link pricing rate is then recalibrated and
updated. This loop continues until the difference between
iterations of link pricing rates in the objective function falls
below a critical threshold. The essential steps in this process
are shown below:

Algorithm 1 Algorithm for optimal pricing and traffic
estimation

Input: road network and original travel demand

Output: optimal price, demand, and traffic conditions under
the pricing.

1. Initiate the network by assigning the traffic based on
original demand and each trip travel cost uS,.

2. Based on the link volume x, from previous step, calculate
the marginal price M} and associate MSA surcharge rate S;/.

3. Estimate each OD pair w travel demand d,,, based on the
updated link surcharge rate while ensuring the link travel time
ta ().

4. Re-estimate the traffic assignment with the update demand
and surcharge rate.

5. Convergence check: if the link Surcharge rate difference is
smaller than the criteria ),4|S* — S? 1| < &, otherwise
return to step 2.

A. Initialize the network

In the initial stage, the time period is divided into t €
T time segments to coordinate traffic information update
frequency. Within the initial time segment ¢, the network is
set to the no-surcharge scenario by carrying the full load of
demand and distributing traffic with the UE assignment. The
original O-D trip travel cost is calculated using the total link
cost of its shortest path with the estimated traffic condition:

950



W= ) Bty (1)

a
sk — {1, link on shortest path
a 0, otherwise

(15)

As shown, 6;"‘” is an indicator variable for each link: it is
equal to 1 if link a is on the shortest path k between the O-D
pair w; it is equal to O if link a is not on that path. Through
this step, the complex network path-based cost problem is
transferred to the link-based calculation.

B. Calculate the link dynamic pricing
The E-hailing AVs’ dynamic pricing is calculated using

each time segment to coordinate the traffic information update.

The two process are: using marginal pricing computing to
optimize the network balance; and using an iterative heuristic
approach to capture the travelers’ reactions.

Link-based marginal cost computing implies the negative
externality of adding an additional car, which imposes costs
on all the other existing cars on the road. The value of this
negative externality is equal to the arc elasticity of the link
cost (subject to current traffic volume), which can be written
as:

2 dta (xa)

n _—
Ma_xa

dxt an

The Appendix shows the difference between the non-
surcharge scenario and the System Optimal (SO) scenario is
the link-based marginal cost. Which indicate that, if all AVs
choose their routes based not only on their least costly paths,
but also considering their negative externality on all other
existing vehicles, the final traffic condition is the System
Optimal (SO) solution.

Meanwhile, the assumption of perfect information allows
the AVs to receive the dynamic link pricing for the network
during each time interval as the surcharge authorities obtain
the traffic conditions at the same time. In order to reduce this
back-and-forth process, the Measure of Success Average
method (MSA) is introduced here. The link iteration pricing
is updated with equation (18), where M} is the current
marginal cost of link a, and S?~? is the link pricing rate of the
previous iteration.

n 1 n 1 n—-1
st = ()ma+ (1-7) 2

- () (g (1)
— /) \Fa gyn n/ @

C. Update travel demand

In this step, with the least costly path already having been
identified for each O-D pair, the inverse travel cost function
is applied to estimate the new demand [11]. In the economic
inverse demand function “the price of a good represents the
marginal willingness to pay for an extra unit of the good by
anyone who is demanding that good” [13]. The inverse travel
cost function at any given trip’s cost measures how many AVs
would be willing to take the ride which they intended in the
non-surcharge scenario. The inverse cost function of travel

(18)
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demand, which is equal to the travelers’ willingness to pay for
their desired trip, estimates the demand.
d?, = D, (1) (19)

With the cost of u}, , traveling on path w € W, the inverse
cost function is % = Dil(d%). t% and ST represent the
route total travel time cost and the total surcharge rate in
iteration n, which are two major components of total travel
cost:

WY = €+ S (20)

In this heuristic approach, in order to coordinate the travel
time reliably, which constrains equation (2), and serves as
much of the original travel demand as possible, which is the
solution to equation (8) ~ (14). However, the mathematic
solution to this problem is not straightforward since each link
in the network can be used by multiple routes. This means if
one AV switches its route, it could affect multiple AVs,
causing them to switch their routes or even cancel their trips.
And this problem becomes more complicated considering
reliable the travel time simultaneously. Therefore, we propose
the following incremental algorithm to solve this complex
problem:

Algorithm 2 Algorithm for travel demand estimation while
ensuring travel time reliability

Begin
1:  Set Vx; = 0, incremental iteration i = 1, incremental rate p;
While

2:  The initial demand has not been fully served: i <= :—, ;

Do {
3: Perform all-pair-shortest path assignment for all demand
w € W based on uj}
4 Set each link on the shortest pathw € W: §;"" =1,
Otherwise: §;"" =0
While
S: OD pairw € W and
o 4
D e [ta <1 +o15-(2) > + 5[:] < s
a
a
Do {
6: Update link volume: x}; += 8 - D - p;
7: Update OD pair demand: DI} += D% :p
8: Move to next OD pairw € W;

}
Check each link:
: If: t7 (w) =2 (1 + )ty
10: Increase the surcharge rate by:
Sg =531+ %)
}
i++;
}
End;

The pseudo-code of algorithm 2 demonstrates the
incremental process of the new travel demand estimation
while ensuring travel time reliability. Lines 1 and 2 are the
outer layer loop and searching step length settings for this
algorithm. Lines 3 and 4 identify the all-pair-shortest-path



based on current traffic conditions and price. Similar to [14],
performing all-pair-shortest-path process in the beginning of
the incremental loading loop will reduce the computation
complexity. Since this program will run multiple iterations,
the difference between conducting it in the beginning and
during incremental loading will be eliminated. Links 5 ~8 are
the first criteria to check in order to see if p percent of
original demand will add to the network based on the travel
cost; while lines 9 and 10 are the second criteria to check in
order to see if p percent demand added to the network will
cause link congestion. The program will move to the next
iteration after these two criterial checks.

D. Convergence Check

The heuristic approach ends when the convergence criteria
meet, which is when the sum of all links” absolute link pricing
differences between the last two iterations are smaller than &:

Z|52—53‘1| <e @1)
a

Overall, this heuristic approach simulates the back-and-
forth negotiation process among the surcharge authority, the
E-hailing company, the AVs and the customers. Since this
process is based on each component’s reaction, it will not
encounter feasible solution issues. That means at the worst-
case scenarios, the dynamic pricing of the link surcharge will
become extremely high, which will exclude some customers
to ensure that the link maintains its non-congested condition.
Leftover customers may shift their ride to a less congested
time period or switch to another mode of transportation (like
public transit).

IV. EVALUATION RESULTS

The method described above will be demonstrated in the
well-known and well-studied 24 nodes, 76 links, and 360,600
total OD trips comprising the Sioux Fall network (assume all
demands are running for the e-hailing services). While it has
been noted that this network bears little physical sameness to
Sioux Falls, South Dakota today, the network and its
associated data have been widely used in variety of
transportation network analysis studies.[20] The different
lines (solid/dot/dash) indicate the link volume-to-capacity
(v/c) ratio based on User Equilibrium Assignment (as shown
in Fig. 2). Due to the large travel demand, 37 out of 76 links
are over capacity, and eight links have a v/c ratio over 1.5.
Many of the high-volume links are clustered around the
network center at nodes 11 and 6, as they are where the travel
is concentrated.

Fig. 3 illustrates the link surcharge rates and v/c ratios after
the e-hailing surcharge has been applied. With a 44.75%
decrease in demand, most of the links’ congestion conditions
have been reduced. An important note here is that links
between 13 and 24, and 10 and 16, have been charged the
highest rate even though they are not seriously congested in
the non-surcharge scenario. The reason for this is that even
with the surcharge, the demands for using nearby alternative
links are still high, and a high surcharge rate prevents a large

amount of traffic from switching to these non-congested roads.
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Table II exhibits different alternative routes in three traffic
conditions. In the most congested route, the traffic condition
improved after the surcharge was applied. However, due to
the longer distances in the alternative routes, the traveler
would expect a much longer travel time even when the
surcharge rate is still high. Similarly, in the median congested
route category, since many of these routes are also located in
the center of the city, the alternative routes still face a
considerable amount of surcharge and extra travel time. This
is the opposite case in the un-congested category, since
travelers expect a higher surcharge rate and longer travel time
because their alternative route will go through some
congested links.

Figure 2. Sioux Falls Network under UE Assignment
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TABLE II. PATH ANALYSIS
Sioux Falls Network Analysis
§ From 12 to 10
é;n Links Time Surcharge
3 Path 1 12-11-10 13.21 15.00
Z Path 2 12-3-4-11-10 20.99 9.98
= Path 3 12-3-4-5-9-10 21.01 8.05
E From 10 to 18
g;n Links Time Surcharge
S Path 1 10-16-18 7.83 17.27
;§ Path 2 10-17-16-18 16.58 15.21
g Path 3 10-9-8-7-18 23.54 10.45
- From 5 to 3
% Links Time Surcharge
£ | Pathl 5-4-3 6.19 0.65
%.:) Path 2 5-6-2-1-3 19.3 14.05
- Path 3 5-9-10-11-12-3 28.22 21.46
TABLE III. SUMMARY OF CHANGE
Before After Percentage
Surcharge Surcharge Change
Total system travel time 7,476,972 3,705,927 -50.44%
Travel Demand 360,600 199,240 -44.75%
Average link travel time 8.81 7.87 -10.65%
Average link V/C ratio 1.09 0.75 -32.86%
Average Surcharge rate 0.00 3.09 N/A
Average link travel cost 8.81 11.25 27.74%

Overall, as table I1I shows, with a 44.75% demand change,
the total system travel time was reduced by 50.44% and each
link travel time was reduced by 10.65%. The road became less
congested with a v/c ratio 0.75, but travelers can expect an
average 27.74% increase in cost to accomplish their trip.

V. CONCLUSION

In this research, we introduced an economical way to
calculate the optimal E-hailing surcharge rate in order to
improve travel time reliability and system performance during
peak travel hours. All link-based E-hailing service congestion
surcharges were calculated through a heuristic approach. The
results demonstrated that the principles of UE assignment
were maintained in the travelers’ path choice behavior while
leveraging the relationship between SO and UE using the
marginal cost function. At the same time, revenue received
from this surcharge can be used in various ways, such as
improving transit service quality or upgrading road
infrastructure which could also advance road network
performance. In all applications in this paper, demand saw a
significant drop from its original level. Future work can
explore alternate means of estimating demand response to
surcharge levels and/or fine tune the existing function.
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